Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Freeze–thaw cycles (FTCs) occur during the nongrowing season, and residual nitrogen (N) increases the risk of N loss with melting water. To study the effect of FTCs on soil N, rice fields in improved irrigated saline soil in northeast China were selected as the research subjects. Water content (10%, 20%, and 30%), different N fertilizer levels (180 and 220 kg/ha), and multiple FTCs of soil samples were used to clarify the effects of N fertilizer application and water content on N efficiency. The results indicate that, after the third FTC, the soil ammonium nitrogen (NH4+-N) level increased significantly. NH4+-N increased with an increase in the initial soil moisture content and decreased with fertilizer levels. Nitrate nitrogen (NO3-N) decreases with increasing initial soil moisture. The inorganic N increased significantly compared with that in the unfrozen stage, indicating that FTCs promote soil N mineralization. However, high fertilization rates inhibit mineralization. Analysis of variance showed that NO3-N is sensitive to the N application rate, water content, and salinity (p < 0.05). FTCs and artificial fertilization are the factors that affect N mineralization (p < 0.05). The research results are significant for preventing nitrate leaching and soil acidification during spring plowing and providing a scientific basis for fertilization systems and water environment pollution in improved saline soils.

Details

Title
Effects of Freeze–Thaw Cycles on Soil Nitrogen Transformation in Improved Saline Soils from an Irrigated Area in Northeast China
Author
Nie, Siyu 1 ; Jia, Xian 2 ; Zou, Yuanchun 3   VIAFID ORCID Logo  ; Bian, Jianmin 4 

 School of Water Conservancy & Environment Engineering, Changchun Institute of Technology, Changchun 130012, China; [email protected] 
 Songliao River Water Resources Commission of Ministry Water Resources, Changchun 130021, China; [email protected] 
 State Key Laboratory of Black Soils Conservation and Utilization & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetlandand Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; [email protected] 
 College of New Energy and Environment, Jilin University, Changchun 130021, China 
First page
653
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955907654
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.