Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The accurate measurement and the investigation of electromagnetic transients are becoming more important, especially with the increasing integration of renewable energy sources into the power grid. These sources introduce new transient phenomena due to the extensive use of power electronics. To achieve this, the measurement devices must have a broadband response capable of measuring fast transients. This paper presents a capacitive electric field sensor-based measurement system to measure transient overvoltages in high-voltage substations. The concept and design of the measurement system are first presented. Then, the design and concept are validated using tests performed in a high-voltage laboratory. Afterwards, two different calibration techniques are discussed: the simplified method (SM) and the coupling capacitance compensation (CCC) method. Finally, three recorded transients are evaluated using the calibration methods. The investigation revealed that the SM tends to overestimate the maximum overvoltage, highlighting the CCC method as a more suitable approach for calibrating transient overvoltage measurements. This measurement system has been validated using various measurements and can be an efficient and flexible solution for the long-term monitoring of transient overvoltages in high-voltage substations.

Details

Title
Measurement of Transient Overvoltages by Capacitive Electric Field Sensors
Author
Probst, Felipe L  VIAFID ORCID Logo  ; Beltle, Michael  VIAFID ORCID Logo  ; Tenbohlen, Stefan  VIAFID ORCID Logo 
First page
1357
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955909039
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.