Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

False data injection attacks (FDIAs) on sensor networks involve injecting deceptive or malicious data into the sensor readings that cause decision-makers to make incorrect decisions, leading to serious consequences. With the ever-increasing volume of data in large-scale sensor networks, detecting FDIAs in large-scale sensor networks becomes more challenging. In this paper, we propose a framework for the distributed detection of FDIAs in large-scale sensor networks. By extracting the spatiotemporal correlation information from sensor data, the large-scale sensors are categorized into multiple correlation groups. Within each correlation group, an autoregressive integrated moving average (ARIMA) is built to learn the temporal correlation of cross-correlation, and a consistency criterion is established to identify abnormal sensor nodes. The effectiveness of the proposed detection framework is validated based on a real dataset from the U.S. smart grid and simulated under both the simple FDIA and the stealthy FDIA strategies.

Details

Title
A Framework for Detecting False Data Injection Attacks in Large-Scale Wireless Sensor Networks
Author
Hu, Jiamin 1   VIAFID ORCID Logo  ; Yang, Xiaofan 1   VIAFID ORCID Logo  ; Lu-Xing, Yang 2 

 School of Big Data & Software Engineering, Chongqing University, Chongqing 400044, China; [email protected] 
 College of Information Technology, Deakin University, Melbourne, VIC 3125, Australia; [email protected] 
First page
1643
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955910224
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.