Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Citrus fruits were sorted based on external qualities, such as size, weight, and color, and internal qualities, such as soluble solid content (SSC), acidity, and firmness. Visible and near-infrared (VNIR) hyperspectral imaging techniques were used as rapid and nondestructive techniques for determining the internal quality of fruits. The applicability of the VNIR hyperspectral imaging technique for predicting the SSC in citrus fruits was evaluated in this study. A VNIR hyperspectral imaging system with a wavelength range of 400–1000 nm and 100 W light source was used to acquire hyperspectral images from citrus fruits in two orientations (i.e., stem and calyx ends). The SSC prediction model was developed using partial least-squares regression (PLSR). Spectrum preprocessing, effective wavelength selection through competitive adaptive reweighted sampling (CARS), and outlier detection were used to improve the model performance. The performance of each model was evaluated using the coefficient of determination (R2) and root mean square error (RMSE). In the present study, the PLSR model was developed using only a citrus cultivar. The SSC prediction CARS-PLSR model with outliers removed exhibited R2 and RMSE values of approximatively 0.75 and 0.56 °Brix, respectively. The results of this study are expected to be useful in similar fields such as agricultural and food post-harvest management, as well as in the development of an online system for determining the SSC of citrus fruits.

Details

Title
Prediction of Soluble-Solid Content in Citrus Fruit Using Visible–Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm
Author
Min-Jee, Kim 1 ; Woo-Hyeong Yu 2 ; Doo-Jin, Song 3 ; Seung-Woo, Chun 3 ; Kim, Moon S 4 ; Lee, Ahyeong 5   VIAFID ORCID Logo  ; Kim, Giyoung 6 ; Shin, Beom-Soo 7 ; Mo, Changyeun 7   VIAFID ORCID Logo 

 Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; [email protected] 
 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; [email protected] 
 Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; [email protected] (D.-J.S.); [email protected] (S.-W.C.) 
 Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA; [email protected] 
 Department of Agricultural Engineering, National Institute of Agricultural Sciences, Jeonju 54875, Republic of Korea; [email protected] 
 Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Haman 52054, Republic of Korea; [email protected] 
 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; [email protected]; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; [email protected] (D.-J.S.); [email protected] (S.-W.C.) 
First page
1512
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955912002
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.