It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO3.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Southern University of Science and Technology, Department of Materials Science and Engineering, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790)
2 Southern University of Science and Technology, Department of Materials Science and Engineering, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790)