Full text

Turn on search term navigation

© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree.

Results

Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter’s W-box element.

Conclusions

This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii.

Details

Title
Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt
Author
Cao, Yunpeng; Mo, Wanzhen; Li, Yanli; Yao, Xiong; Wang, Han; Zhang, Yingjie; Lin, Mengfei; Zhang, Lin; Li, Xiaoxu
Pages
1-13
Section
Research article
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
17417007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2956836158
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.