It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Application of accumulated experience and management measures in the prevention and control of coronavirus disease 2019 (COVID-19) has generally depended on the subjective judgment of epidemic intensity, with the quality of prevention and control management being uneven. The present study was designed to develop a novel risk management system for COVID-19 infection in outpatients, with the ability to provide accurate and hierarchical control based on estimated risk of infection.
Methods
Infection risk was estimated using an auto regressive integrated moving average model (ARIMA). Weekly surveillance data on influenza-like-illness (ILI) among outpatients at Xuanwu Hospital Capital Medical University and Baidu search data downloaded from the Baidu Index in 2021 and 22 were used to fit the ARIMA model. The ability of this model to estimate infection risk was evaluated by determining the mean absolute percentage error (MAPE), with a Delphi process used to build consensus on hierarchical infection control measures. COVID-19 control measures were selected by reviewing published regulations, papers and guidelines. Recommendations for surface sterilization and personal protection were determined for low and high risk periods, with these recommendations implemented based on predicted results.
Results
The ARIMA model produced exact estimates for both the ILI and search engine data. The MAPEs of 20-week rolling forecasts for these datasets were 13.65% and 8.04%, respectively. Based on these two risk levels, the hierarchical infection prevention methods provided guidelines for personal protection and disinfection. Criteria were also established for upgrading or downgrading infection prevention strategies based on ARIMA results.
Conclusion
These innovative methods, along with the ARIMA model, showed efficient infection protection for healthcare workers in close contact with COVID-19 infected patients, saving nearly 41% of the cost of maintaining high-level infection prevention measures and enhancing control of respiratory infections.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer