Abstract

Background

Transitions from sexual to asexual reproduction are common in eukaryotes, but the underlying mechanisms remain poorly known. The pea aphid—Acyrthosiphon pisum—exhibits reproductive polymorphism, with cyclical parthenogenetic and obligate parthenogenetic lineages, offering an opportunity to decipher the genetic basis of sex loss. Previous work on this species identified a single 840 kb region controlling reproductive polymorphism and carrying 32 genes. With the aim of identifying the gene(s) responsible for sex loss and the resulting consequences on the genetic programs controlling sexual or asexual embryogenesis, we compared the transcriptomic response to photoperiod shortening—the main sex-inducing cue—of a sexual and an obligate asexual lineage of the pea aphid, focusing on heads (where the photoperiodic cue is detected) and embryos (the final target of the cue).

Results

Our analyses revealed that four genes (one expressed in the head, and three in the embryos) of the region responded differently to photoperiod in the two lineages. We also found that the downstream genetic programs expressed during embryonic development of a future sexual female encompass ∼1600 genes, among which miRNAs, piRNAs and histone modification pathways are overrepresented. These genes mainly co-localize in two genomic regions enriched in transposable elements (TEs).

Conclusions

Our results suggest that the causal polymorphism(s) in the 840 kb region somehow impair downstream epigenetic and post-transcriptional regulations in obligate asexual lineages, thereby sustaining asexual reproduction.

Details

Title
Transcriptomic basis of sex loss in the pea aphid
Author
Huguet, M D; Robin, S; Hudaverdian, S; Tanguy, S; Leterme-Prunier, N; Cloteau, R; Baulande, S; Legoix-Né, P; Legeai, F; J.-C. Simon; Jaquiéry, J; Tagu, D; G. Le Trionnaire
Pages
1-17
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2956853935
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.