It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Gabon still bears significant malaria burden despite numerous efforts. To reduce this burden, policy-makers need strategies to design effective interventions. Besides, malaria distribution is well known to be related to the meteorological conditions. In Gabon, there is limited knowledge of the spatio-temporal effect or the environmental factors on this distribution. This study aimed to investigate on the spatio-temporal effects and environmental factors on the distribution of malaria prevalence among children 2–10 years of age in Gabon.
Methods
The study used cross-sectional data from the Demographic Health Survey (DHS) carried out in 2000, 2005, 2010, and 2015. The malaria prevalence was obtained by considering the weighting scheme and using the space–time smoothing model. Spatial autocorrelation was inferred using the Moran’s I index, and hotspots were identified with the local statistic Getis-Ord General Gi. For the effect of covariates on the prevalence, several spatial methods implemented in the Integrated Nested Laplace Approximation (INLA) approach using Stochastic Partial Differential Equations (SPDE) were compared.
Results
The study considered 336 clusters, with 153 (46%) in rural and 183 (54%) in urban areas. The prevalence was highest in the Estuaire province in 2000, reaching 46%. It decreased until 2010, exhibiting strong spatial correlation (P < 0.001), decreasing slowly with distance. Hotspots were identified in north-western and western Gabon. Using the Spatial Durbin Error Model (SDEM), the relationship between the prevalence and insecticide-treated bed nets (ITNs) coverage was decreasing after 20% of coverage. The prevalence in a cluster decreased significantly with the increase per percentage of ITNs coverage in the nearby clusters, and per degree Celsius of day land surface temperature in the same cluster. It slightly increased with the number of wet days and mean temperature per month in neighbouring clusters.
Conclusions
In summary, this study showed evidence of strong spatial effect influencing malaria prevalence in household clusters. Increasing ITN coverage by 20% and prioritizing hotspots are essential policy recommendations. The effects of environmental factors should be considered, and collaboration with the national meteorological department (DGM) for early warning systems is needed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer