It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Investigate the potential benefits of sequential deployment of two deep learning (DL) algorithms namely DL-Enhancement (DLE) and DL-based time-of-flight (ToF) (DLT). DLE aims to enhance the rapidly reconstructed ordered-subset-expectation-maximisation algorithm (OSEM) images towards block-sequential-regularised-expectation-maximisation (BSREM) images, whereas DLT aims to improve the quality of BSREM images reconstructed without ToF. As the algorithms differ in their purpose, sequential application may allow benefits from each to be combined. 20 FDG PET-CT scans were performed on a Discovery 710 (D710) and 20 on Discovery MI (DMI; both GE HealthCare). PET data was reconstructed using five combinations of algorithms:1. ToF-BSREM, 2. ToF-OSEM + DLE, 3. OSEM + DLE + DLT, 4. ToF-OSEM + DLE + DLT, 5. ToF-BSREM + DLT. To assess image noise, 30 mm-diameter spherical VOIs were drawn in both lung and liver to measure standard deviation of voxels within the volume. In a blind clinical reading, two experienced readers rated the images on a five-point Likert scale based on lesion detectability, diagnostic confidence, and image quality.
Results
Applying DLE + DLT reduced noise whilst improving lesion detectability, diagnostic confidence, and image reconstruction time. ToF-OSEM + DLE + DLT reconstructions demonstrated an increase in lesion SUVmax of 28 ± 14% (average ± standard deviation) and 11 ± 5% for data acquired on the D710 and DMI, respectively. The same reconstruction scored highest in clinical readings for both lesion detectability and diagnostic confidence for D710.
Conclusions
The combination of DLE and DLT increased diagnostic confidence and lesion detectability compared to ToF-BSREM images. As DLE + DLT used input OSEM images, and because DL inferencing was fast, there was a significant decrease in overall reconstruction time. This could have applications to total body PET.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Oxford University Hospitals, Oxford, UK (GRID:grid.410556.3) (ISNI:0000 0001 0440 1440)
2 GE HealthCare, Oxford, UK (GRID:grid.420685.d) (ISNI:0000 0001 1940 6527)
3 Cardiff University, Cardiff, UK (GRID:grid.5600.3) (ISNI:0000 0001 0807 5670)
4 GE HealthCare, Waukesha, USA (GRID:grid.418143.b) (ISNI:0000 0001 0943 0267)
5 Oxford University Hospitals, Oxford, UK (GRID:grid.410556.3) (ISNI:0000 0001 0440 1440); University of Oxford, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948)