Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the field of heat and mass transfer applications, non-Newtonian fluids are potentially considered to play a very important role. This study examines the magnetohydrodynamic (MHD) bioconvective Eyring–Powell fluid flow on a permeable cone and plate, considering the viscous dissipation (0.3 ≤ Ec ≤0.7), the uniform heat source/sink (−0.1 ≤ Q0 ≤ 0.1), and the activation energy (−1 ≤ E1 ≤ 1). The primary focus of this study is to examine how MHD and porosity impact heat and mass transfer in a fluid with microorganisms. A similarity transformation (ST) changes the nonlinear partial differential equations (PDEs) into ordinary differential equations (ODEs). The Keller Box (KB) finite difference method solves these equations. Our findings demonstrate that adding MHD (0.5 ≤ M ≤ 0.9) and porosity (0.3 ≤ Γ ≤ 0.7) effects improves microbial diffusion, boosting the rates of mass and heat transfer. Our comparison of our findings to prior studies shows that they are reliable.

Details

Title
Analyzing the MHD Bioconvective Eyring–Powell Fluid Flow over an Upright Cone/Plate Surface in a Porous Medium with Activation Energy and Viscous Dissipation
Author
Francis, Peter 1   VIAFID ORCID Logo  ; Sambath, Paulsamy 1   VIAFID ORCID Logo  ; Dhanasekaran, Seshathiri 2   VIAFID ORCID Logo 

 Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; [email protected] 
 Department of Computer Science, UiT the Arctic University of Norway, 9037 Tromso, Norway 
First page
48
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20793197
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2992551184
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.