Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper discusses a key technique for passive localization and tracking of radiation sources, which obtains the motion trajectory of radiation sources carried by unmanned aerial vehicles (UAVs) by continuously or periodically localizing it without the active participation of the radiation sources. However, the existing methods have some limitations in complex signal environments and non-stationary wireless propagation that impact the accuracy of localization and tracking. To address these challenges, this paper extends the δ-generalized labeled multi-Bernoulli (GLMB) filter to the scenario of passive localization and tracking based on the random finite-set (RFS) framework and provides the extended Kalman filter (EKF) and unscented Kalman filter (UKF) implementations of the δ-GLMB filter, which fully take into account the nonlinear motion of the radiation source. By modeling the “obstacle scenario” and the influence of external factors (e.g., weather, terrain), our proposed GLMB filter can accurately track the target and capture its motion trajectory. Simulation results verify the effectiveness of the GLMB filter in target identification and state tracking.

Details

Title
Generalized Labeled Multi-Bernoulli Filter-Based Passive Localization and Tracking of Radiation Sources Carried by Unmanned Aerial Vehicles
Author
Zhao, Jun 1   VIAFID ORCID Logo  ; Gui, Renzhou 1 ; Dong, Xudong 2 

 College of Electronic and Information Engineering, Tongji University, Shanghai 201800, China; [email protected] 
 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China; [email protected] 
First page
96
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2998917854
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.