Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the emergence of blockchain technology, the cryptocurrency market has experienced significant growth in recent years, simultaneously fostering environments conducive to cybercrimes such as phishing scams. Phishing scams on blockchain platforms like Ethereum have become a grave economic threat. Consequently, there is a pressing demand for effective detection mechanisms for these phishing activities to establish a secure financial transaction environment. However, existing methods typically utilize only the most recent transaction record when constructing features, resulting in the loss of vast amounts of transaction data and failing to adequately reflect the characteristics of nodes. Addressing this need, this study introduces a multiscale feature fusion approach integrated with a graph convolutional network model to detect phishing scams on Ethereum. A node basic feature set comprising 12 features is initially designed based on the Ethereum transaction dataset in the basic feature module. Subsequently, in the edge embedding representation module, all transaction times and amounts between two nodes are sorted, and a gate recurrent unit (GRU) neural network is employed to capture the temporal features within this transaction sequence, generating a fixed-length edge embedding representation from variable-length input. In the time trading feature module, attention weights are allocated to all embedding representations surrounding a node, aggregating the edge embedding representations and structural relationships into the node. Finally, combining basic and time trading features of the node, graph convolutional networks (GCNs), SAGEConv, and graph attention networks (GATs) are utilized to classify phishing nodes. The performance of these three graph convolution-based deep learning models is validated on a real Ethereum phishing scam dataset, demonstrating commendable efficiency. Among these, SAGEConv achieves an F1-score of 0.958, an AUC-ROC value of 0.956, and an AUC-PR value of 0.949, outperforming existing methods and baseline models.

Details

Title
Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams
Author
Chen, Zhen; Huang, Jia; Liu, Shengzheng; Long, Haixia  VIAFID ORCID Logo 
First page
1012
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2998920482
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.