Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Reservoir permeability is an important parameter for reservoir characterization and the estimation of current and future production from hydrocarbon reservoirs. Logging data is an important means of evaluating the continuous permeability curve of the whole well section. Nuclear magnetic resonance logging measurement results are less affected by lithology and have obvious advantages in interpreting permeability. The Coates model, SDR model, and other complex mathematical equations used in NMR logging may achieve a precise approximation of the permeability values. However, the empirical parameters in those models often need to be determined according to the nuclear magnetic resonance experiment, which is time-consuming and expensive. Machine learning, as an efficient data mining method, has been increasingly applied to logging interpretation. XGBoost algorithm is applied to the permeability interpretation of carbonate reservoirs. Based on the actual logging interpretation data, with the proportion of different pore components and the logarithmic mean value of T2 in the NMR logging interpretation results as the input variables, a regression prediction model is established through XGBoost algorithm to predict the permeability curve, and the optimization of various parameters in XGBoost algorithm is discussed. The determination coefficient is utilized to check the overall fitting between measured permeability versus predicted ones. It is found that XGBoost algorithm achieved overall better performance than the traditional models.

Details

Title
Permeability Prediction of Carbonate Reservoir Based on Nuclear Magnetic Resonance (NMR) Logging and Machine Learning
Author
Zhao, Jianpeng 1 ; Wang, Qi 1 ; Wei, Rong 2 ; Zeng, Jingbo 2 ; Ren, Yawen 2 ; Chen, Hui 2 

 School of Earth Sciences & Engineering, Xi’an Shiyou University, Xi’an 710065, China; [email protected]; Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an 710065, China 
 Geological Research Institute, China Petroleum Logging Co., Ltd., Xi’an 710075, China; [email protected] (W.R.); [email protected] (Y.R.); 
First page
1458
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3000393367
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.