Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The prognosis of wind turbine failures in real operating conditions is a significant gap in the academic literature and is essential for achieving viable performance parameters for the operation and maintenance of these machines, especially those located offshore. This paper presents a framework for estimating the remaining useful life (RUL) of the main bearing using regression models fed operational data (temperature, wind speed, and the active power of the network) collected by a supervisory control and data acquisition (SCADA) system. The framework begins with a careful data filtering process, followed by creating a degradation profile based on identifying the behavior of temperature time series. It also uses a cross-validation strategy to mitigate data scarcity and increase model robustness by combining subsets of data from different available turbines. Support vector, gradient boosting, random forest, and extra trees models were created, which, in the tests, showed an average of 20 days in estimating the remaining useful life and presented mean absolute error (MAE) values of 0.047 and mean squared errors (MSE) of 0.012. As its main contributions, this work proposes (i) a robust and effective regression modeling method for estimating RUL based on temperature and (ii) an approach for dealing with a lack of data, a common problem in wind turbine operation. The results demonstrate the potential of using these forecasts to support the decision making of the teams responsible for operating and maintaining wind farms.

Details

Title
Remaining Useful Life Estimation Framework for the Main Bearing of Wind Turbines Operating in Real Time
Author
Januário Leal de Moraes Vieira 1 ; Felipe Costa Farias 1 ; Villa Ochoa, Alvaro Antonio 2   VIAFID ORCID Logo  ; Frederico Duarte de Menezes 2 ; Alexandre Carlos Araújo da Costa 3 ; José Ângelo Peixoto da Costa 2   VIAFID ORCID Logo  ; Gustavo de Novaes Pires Leite 4   VIAFID ORCID Logo  ; de Castro Vilela, Olga 5 ; Marrison Gabriel Guedes de Souza 6 ; Paula Suemy Arruda Michima 7   VIAFID ORCID Logo 

 Department of Higher Education Courses (DACS), Federal Institute of Education, Science and Technology of Pernambuco, Av. Prof Luiz Freire, 500, Recife 50740-545, Brazil; [email protected] (J.L.d.M.V.); [email protected] (F.C.F.); [email protected] (F.D.d.M.); [email protected] (J.Â.P.d.C.); [email protected] (G.d.N.P.L.) 
 Department of Higher Education Courses (DACS), Federal Institute of Education, Science and Technology of Pernambuco, Av. Prof Luiz Freire, 500, Recife 50740-545, Brazil; [email protected] (J.L.d.M.V.); [email protected] (F.C.F.); [email protected] (F.D.d.M.); [email protected] (J.Â.P.d.C.); [email protected] (G.d.N.P.L.); Department of Mechanical Engineering, Federal University of Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] (A.C.A.d.C.); [email protected] (P.S.A.M.) 
 Department of Mechanical Engineering, Federal University of Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] (A.C.A.d.C.); [email protected] (P.S.A.M.); Centro de Energias Renováveis (CER), Universidade Federal de Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] 
 Department of Higher Education Courses (DACS), Federal Institute of Education, Science and Technology of Pernambuco, Av. Prof Luiz Freire, 500, Recife 50740-545, Brazil; [email protected] (J.L.d.M.V.); [email protected] (F.C.F.); [email protected] (F.D.d.M.); [email protected] (J.Â.P.d.C.); [email protected] (G.d.N.P.L.); Department of Mechanical Engineering, Federal University of Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] (A.C.A.d.C.); [email protected] (P.S.A.M.); Centro de Energias Renováveis (CER), Universidade Federal de Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] 
 Centro de Energias Renováveis (CER), Universidade Federal de Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] 
 NEOG—New Energy Options Geração de Energia, Guamaré 59598-000, Brazil; [email protected] 
 Department of Mechanical Engineering, Federal University of Pernambuco, Cidade Universitaria, 1235, Recife 50670-901, Brazil; [email protected] (A.C.A.d.C.); [email protected] (P.S.A.M.) 
First page
1430
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3001075449
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.