Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To construct a clean and efficient energy system, advanced solar thermal power generation technology is developed, i.e., a solar hybrid STIGT (Steam Injected Gas Turbine) system with near zero water supply. Such a system is conducive to the efficient use of solar energy and water resources, and to improvement of the performance of the overall system. Given that the strong correlation between multiple-input and multiple-output of the new system, the MDMC (Multivariable Dynamic Matrix Control) method is proposed as an alternative to a PID (Proportional-Integral-Derivative) controller to meet requirements in achieving better control characteristics for a complex power system. First, based on MATLAB/Simulink, a dynamic model of the novel system is established. Then it is validated by both experimental and literature data, yielding an error no more than 5%. Subsequently, simulation results demonstrate that the overshoot of output power on MDMC is 1.2%, lower than the 3.4% observed with the PID controller. This improvement in stability, along with a reduction in settling time and peak time by over 50%, highlights the excellent potential of the MDMC in controlling overshoot and settling time in the novel system, while providing enhanced stability, rapidity, and accuracy in the regulation and control of distribution networks.

Details

Title
Study on Multivariable Dynamic Matrix Control for a Novel Solar Hybrid STIGT System
Author
Zheng, Shupeng 1 ; Luo, Zecheng 1 ; Wu, Jiwu 2 ; Zhang, Lunyuan 1 ; He, Yijian 1 

 Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China; [email protected] (S.Z.); [email protected] (Z.L.); [email protected] (L.Z.) 
 Zhejiang Jilisi Auto Air-Condition Co., Ltd., Lishui 323000, China 
First page
1425
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3001175990
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.