Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The quantile regression technique is introduced into the Lotka–Volterra ecosystem analysis framework. The quantile grey Lotka–Volterra model is established to reveal the dynamic trade relationship between China and the United States. An optimisation model is constructed to solve optimum quantile parameters. The empirical results show that the quantile grey Lotka–Volterra model shows higher fitting accuracy and reveals the trade relationships at different quantiles based on quarterly data on China–US trade from 1999 to 2019. The long-term China–US trade relationship presents a prominent predator–prey relationship because exports from China to the US inhibited China’s imports from the United States. Moreover, we divide samples into five stages according to four key events, China’s accession to the WTO, the 2008 global financial crisis, the weak global economic recovery in 2015, and the 2018 China–US trade war, recognising various characteristics at different stages.

Details

Title
Identification of the Dynamic Trade Relationship between China and the United States Using the Quantile Grey Lotka–Volterra Model
Author
Zheng-Xin, Wang  VIAFID ORCID Logo  ; Yue-Ting, Li; Ling-Fei, Gao
First page
171
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3001520461
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.