Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many practical problems can be classified as constrained multi-objective optimization problems. Although various methods have been proposed for solving constrained multi-objective optimization problems, there is still a lack of research considering the integration of multiple constraint handling techniques. Given this, this paper combines the objective and constraint separation method with the multi-operator method, proposing a population feasibility state guided autonomous constrained evolutionary optimization method. This method first defines the feasibility state of the population based on both feasibility and ε feasibility of the solutions. Subsequently, a reinforcement learning model is employed to construct a mapping model between the population state and reproduction operators. Finally, based on the real-time population state, the mapping model is utilized to recommend the promising reproduction operator for the next generation. This approach demonstrates significant performance improvement for ε constrained mechanisms in constrained multi-objective optimization algorithms, and shows considerable advantages in comparison with state-of-the-art constrained multi-objective optimization algorithms.

Details

Title
Population Feasibility State Guided Autonomous Constrained Multi-Objective Evolutionary Optimization
Author
Zuo, Mingcheng; Xue, Yuan
First page
913
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003339609
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.