Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper investigated the effect of nano-calcium silicate hydrate (n-C-S-H) on the early compressive strength of mineral powder-cement systems under low-temperature curing conditions (5 °C). The hydration mechanism of n-C-S-H in the mineral powder-cement system at different dosages was analyzed by combining it with XRD, DSC-TG, MIP, and other techniques. The results show that n-C-S-H significantly enhances the early compressive strength of the mineral powder-cement system under low-temperature curing conditions, with optimal results observed at a dosage of 1.0% (mass fraction). The XRD, DSC-TG, and MIP tests reveal that n-C-S-H promotes the hydration of the mineral powder cement, accelerates the generation rate of hydration products, reduces the porosity of the hardened mineral powder-cement slurry, and improves the system’s density.

Details

Title
Effect of n-C-S-H on Hydration and Reinforcement of Mineral Powder-Cement System at Low Temperatures
Author
Li, Wei 1 ; Qian, Chunxiang 2 ; Li, Qingchao 3 ; Wang, Kehan 3 ; Zheng, Chunyang 3 ; Zhang, Yanli 3 

 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu ARIT New Materials Co., Ltd., Nanjing 211505, China 
 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 
 Jiangsu ARIT New Materials Co., Ltd., Nanjing 211505, China 
First page
524
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003349687
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.