Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polyethylene terephthalate (PET) films are the subject of intensive research because of great interest in using them in applications, especially in medicine. From an optical point of view, PET films with a low degree of stretching can be considered uniaxial materials, for which the determination of the linear birefringence and its dispersion is very important. Two methods were applied here for the estimation of these parameters: the ellipsometric method and the channeled spectra method. The ellipsometric method uses monochromatic radiation; therefore, the linear birefringence of the PET films is determined for a given value of the radiation wavelength. The channeled spectra method allows for the estimation of the linear birefringence and its dispersion for a large range of wavelengths in the visible spectrum. A decrease in both parameters with the increase in the wavelength was recorded. To evidence the microstructure of PET films and the conformational changes induced by elongation and to evaluate the degree of orientation, a polarized infrared spectral study in attenuated total reflection (ATR-FTIR) mode was performed. The dichroic ratio (between the absorbance measured with linearly polarized radiation parallel and orthogonal relative to the stretching direction, respectively) and the ATR absorbance ratio for the machine direction (MD) and transversal direction (TD) configurations both for the stretched and unstretched PET samples were measured.

Details

Title
Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means
Author
Avadanei, Mihaela Iuliana 1   VIAFID ORCID Logo  ; Dan Gheorghe Dimitriu 2   VIAFID ORCID Logo  ; Dorohoi, Dana Ortansa 2   VIAFID ORCID Logo 

 Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, RO-700487 Iasi, Romania; [email protected] 
 Faculty of Physics, Alexandru Ioan Cuza University, 11 Carol I Blvd., RO-700506 Iasi, Romania; [email protected] 
First page
850
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003353058
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.