Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The gated recurrent unit (GRU) network can effectively capture temporal information for 1D signals, such as electroencephalography and event-related brain potential, and it has been widely used in the field of EEG emotion recognition. However, multi-domain features, including the spatial, frequency, and temporal features of EEG signals, contribute to emotion recognition, while GRUs show some limitations in capturing frequency–spatial features. Thus, we proposed a hybrid architecture of convolutional neural networks and GRUs (CGRU) to effectively capture the complementary temporal features and spatial–frequency features hidden in signal channels. In addition, to investigate the interactions among different brain regions during emotional information processing, we considered the functional connectivity relationship of the brain by introducing a phase-locking value to calculate the phase difference between the EEG channels to gain spatial information based on functional connectivity. Then, in the classification module, we incorporated attention constraints to address the issue of the uneven recognition contribution of EEG signal features. Finally, we conducted experiments on the DEAP and DREAMER databases. The results demonstrated that our model outperforms the other models with remarkable recognition accuracy of 99.51%, 99.60%, and 99.59% (58.67%, 65.74%, and 67.05%) on DEAP and 98.63%, 98.7%, and 98.71% (75.65%, 75.89%, and 71.71%) on DREAMER in a subject-dependent experiment (subject-independent experiment) for arousal, valence, and dominance.

Details

Title
FC-TFS-CGRU: A Temporal–Frequency–Spatial Electroencephalography Emotion Recognition Model Based on Functional Connectivity and a Convolutional Gated Recurrent Unit Hybrid Architecture
Author
Wu, Xia 1   VIAFID ORCID Logo  ; Zhang, Yumei 1 ; Li, Jingjing 2 ; Yang, Honghong 1 ; Wu, Xiaojun 1 

 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China; Key Laboratory of Intelligent Computing and Service Technology for Folk Song, Ministry of Culture and Tourism, Xi’an 710062, China; Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710062, China 
 College of Computer and Information Technology, Nanyang Normal University, Nanyang 473061, China 
First page
1979
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003426812
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.