Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Neural radiance fields (NeRFs) leverage a neural representation to encode scenes, obtaining photorealistic rendering of novel views. However, NeRF has notable limitations. A significant drawback is that it does not capture surface geometry and only renders the object surface colors. Furthermore, the training of NeRF is exceedingly time-consuming. We propose Depth-NeRF as a solution to these issues. Specifically, our approach employs a fast depth completion algorithm to denoise and complete the depth maps generated by RGB-D cameras. These improved depth maps guide the sampling points of NeRF to be distributed closer to the scene’s surface, benefiting from dense depth information. Furthermore, we have optimized the network structure of NeRF and integrated depth information to constrain the optimization process, ensuring that the termination distribution of the ray is consistent with the scene’s geometry. Compared to NeRF, our method accelerates the training speed by 18%, and the rendered images achieve a higher PSNR than those obtained by mainstream methods. Additionally, there is a significant reduction in RMSE between the rendered scene depth and the ground truth depth, which indicates that our method can better capture the geometric information of the scene. With these improvements, we can train the NeRF model more efficiently and achieve more accurate rendering results.

Details

Title
Enhancing View Synthesis with Depth-Guided Neural Radiance Fields and Improved Depth Completion
Author
Wang, Bojun; Zhang, Danhong; Su, Yixin; Zhang, Huajun
First page
1919
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3003444803
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.