It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The consumption of water constitutes the physical health of most of the living species and hence management of its purity and quality is extremely essential as contaminated water has to potential to create adverse health and environmental consequences. This creates the dire necessity to measure, control and monitor the quality of water. The primary contaminant present in water is Total Dissolved Solids (TDS), which is hard to filter out. There are various substances apart from mere solids such as potassium, sodium, chlorides, lead, nitrate, cadmium, arsenic and other pollutants. The proposed work aims to provide the automation of water quality estimation through Artificial Intelligence and uses Explainable Artificial Intelligence (XAI) for the explanation of the most significant parameters contributing towards the potability of water and the estimation of the impurities. XAI has the transparency and justifiability as a white-box model since the Machine Learning (ML) model is black-box and unable to describe the reasoning behind the ML classification. The proposed work uses various ML models such as Logistic Regression, Support Vector Machine (SVM), Gaussian Naive Bayes, Decision Tree (DT) and Random Forest (RF) to classify whether the water is drinkable. The various representations of XAI such as force plot, test patch, summary plot, dependency plot and decision plot generated in SHAPELY explainer explain the significant features, prediction score, feature importance and justification behind the water quality estimation. The RF classifier is selected for the explanation and yields optimum Accuracy and F1-Score of 0.9999, with Precision and Re-call of 0.9997 and 0.998 respectively. Thus, the work is an exploratory analysis of the estimation and management of water quality with indicators associated with their significance. This work is an emerging research at present with a vision of addressing the water quality for the future as well.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Vellore Institute of Technology, School of Computer Science Engineering and Information Systems, Vellore, India (GRID:grid.412813.d) (ISNI:0000 0001 0687 4946)
2 Loyola College, Department of Computer Science, Chennai, India (GRID:grid.413015.2) (ISNI:0000 0004 0505 215X)
3 Shiv Nadar University, Delhi-NCR, India (GRID:grid.410868.3) (ISNI:0000 0004 1781 342X)
4 Leeds Beckett University, School of Built Environment, Engineering and Computing, Leeds, UK (GRID:grid.10346.30) (ISNI:0000 0001 0745 8880); Kebri Dehar University, Department of Computer Science, Kebri Dehar, Ethiopia (GRID:grid.10346.30)