It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Optical spectroscopy is a powerful tool for characterizing the properties of two-dimensional (2D) heterostructures. However, extracting the permittivity information of each 2D layer in optically thick heterostructures is challenging because of interference. To accurately measure the optical permittivity of each 2D layer in a heterostructure or on a substrate with a thick insulating spacer, such as oxides, we propose deterministic reflection contrast ellipsometry (DRCE). Our DRCE method has two advantages over conventional techniques. It deterministically measures the optical permittivity of 2D materials using only the measured reflection spectra of the heterostructure, rather than dispersion fitting as in spectroscopic ellipsometry. Additionally, the DRCE is free of excitonic energy errors in reflection-contrast spectroscopy. We believe that DRCE will enable accurate and rapid characterization of 2D materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Inha University, Incheon, Republic of Korea