It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.
Guo et al. report enhanced emission and photoconductivity in 2D Ruddlesden-Popper perovskites by synergistically tuning the intra and interlayer structure via pressure. A structure descriptor considering both intra- and interlayer is then introduced for screening perovskite with desired properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details












1 Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China (GRID:grid.503238.f) (ISNI:0000 0004 7423 8214)
2 University of Wisconsin-Madison, Department of Chemistry, Madison, USA (GRID:grid.14003.36) (ISNI:0000 0001 2167 3675)
3 Peking University, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)
4 University of Hawaii Manoa, Hawaii Institute of Geophysics & Planetology, Honolulu, USA (GRID:grid.410445.0) (ISNI:0000 0001 2188 0957)