It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Photoacoustic Spectroscopy (PAS) is a potential method for the noninvasive detection of blood glucose. However random blood glucose testing can help to diagnose diabetes at an early stage and is crucial for managing and preventing complications with diabetes. In order to improve the diagnosis, control, and treatment of Diabetes Mellitus, an appropriate approach of noninvasive random blood glucose is required for glucose monitoring. A polynomial kernel-based ridge regression is proposed in this paper to detect random blood glucose accurately using PAS. Additionally, we explored the impact of the biological parameter BMI on the regulation of blood glucose, as it serves as the primary source of energy for the body’s cells. The kernel function plays a pivotal role in kernel ridge regression as it enables the algorithm to capture intricate non-linear associations between input and output variables. Using a Pulsed Laser source with a wavelength of 905 nm, a noninvasive portable device has been developed to collect the Photoacoustic (PA) signal from a finger. A collection of 105 individual random blood glucose samples was obtained and their accuracy was assessed using three metrics: Root Mean Square Error (RMSE), Mean Absolute Difference (MAD), and Mean Absolute Relative Difference (MARD). The respective values for these metrics were found to be 10.94 (mg/dl), 10.15 (mg/dl), and 8.86%. The performance of the readings was evaluated through Clarke Error Grid Analysis and Bland Altman Plot, demonstrating that the obtained readings outperformed the previously reported state-of-the-art approaches. To conclude the proposed IoT-based PAS random blood glucose monitoring system using kernel-based ridge regression is reported for the first time with more accuracy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 SRM University -AP, Department of Electronics and Communication Engineering, Neerukonda, India (GRID:grid.473746.5)
2 SRM University -AP, Department of Computer Science and Engineering, Neerukonda, India (GRID:grid.473746.5)
3 ABV-IIITM Gwalior, Department of Electrical and Electronics Engineering, Gwalior, India (GRID:grid.444426.4) (ISNI:0000 0004 0385 8133)
4 SRM University -AP, Department of Physics, Neerukonda, India (GRID:grid.473746.5)