Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, railway safety accidents have repeatedly occurred. Any omission in the process of management or operation can easily have very serious consequences. This study aimed to examine the causes and transmission mechanisms of safety risks in railway engineering departments. First, the multi-objective particle swarm optimization algorithm was employed to determine the key risk factors, allowing for indicator screening that was in line with the requirements of practical applications. Then, Bayesian networks were used, and their structure was optimized to analyze the propagation diagnosis and probability of key risk indicators, obtaining the causal logic chain that produces accidents and, from that, the four aspects (human, machine, environment, management) of the corresponding prevention of risk recommendations. Finally, in this article, it is shown that combining the indicators and Bayesian networks can improve the accuracy of risk prediction and provide more accurate results than using existing research and, hence, it can fill the gap in research on railway safety risks in risk transmission mechanisms.

Details

Title
Research on the Causes and Transmission Mechanisms of Railway Engineering Safety Risks
Author
Zhang, Tongyu 1 ; Li, Xuewei 2 ; Li, Xueyan 3 

 College of Urban Rail Transit and Logistics, Beijing Union University, Beijing 100101, China; [email protected] 
 School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China 
 Management College, Beijing Union University, Beijing 100101, China; [email protected] 
First page
2739
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037385530
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.