Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The glutinous rice starch (GRS) regeneration process could lead to decreased product quality and shorter shelf life. The purpose of this study was to analyze the effect of an ethanol extract of tea (EET) on the regeneration properties of GRS. The microstructure of starch was determined via scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy was used to determine the microstructure of starch-polyphenol molecular groups, an X-ray diffraction (XRD) instrument was used to determine the starch crystal structure, a differential scanning calorimeter (DSC) was used to determine the thermodynamic properties of starch, and the inhibitory effect of EET on GRS regeneration was comprehensively evaluated. The effect of EET on the in vitro digestion properties of GRS was also determined. The results showed that the addition of EET in GRS resulted in an increase in solubility and swelling power and a decrease in crystallinity and ΔHr. Compared to the control group, when retrograded for 10 days, the ΔHr of GRS with 1%, 2.5%, 5%, and 10% addition of EET decreased by 34.61%, 44.53%, 52.93%, and 66.79%, respectively. Furthermore, the addition of EET resulted in a decrease in the content of RDS and an increase in the content of SDS and RS in GRS. It was shown that the addition of EET could significantly inhibit the retrogradation of GRS, improve the processability, and prolong the shelf life of GRS products.

Details

Title
Effect of Ethanol Extract of Tea on the Microstructural Features and Retrogradation Characteristics of Glutinous Rice Starch
Author
Cong, Shanzi 1 ; Ji, Jie 2 ; Zhang, Xinxin 2 ; Sun, Jingyi 2 ; Zhao, Hongji 2 ; Liu, Xiaolan 1 ; Hu, Nan 1   VIAFID ORCID Logo 

 College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China[email protected] (X.L.); Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, Qiqihar 161006, China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China 
 College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China[email protected] (X.L.) 
First page
1029
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037477259
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.