Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Applying standard aerosol models for atmospheric correction in nearshore coastal waters introduces significant uncertainties due to their inability to accurately represent aerosol characteristics in these regions. To improve the accuracy of remote sensing reflectance (Rrs) products in the nearshore waters of the Shandong Peninsula, this study develops an aerosol model based on aerosol data collected from the Mu Ping site in the coastal area of the Shandong Peninsula, enabling tailored atmospheric correction for this specific region. Given the pronounced seasonal variations in aerosol optical properties, monthly aerosol models were developed. The monthly aerosol model is derived using the average values of aerosol microphysical properties. Compared to the standard aerosol model, this model is more effective in characterizing the absorption and scattering characteristics of aerosols in the study area. Corresponding lookup tables for the aerosol model were created and integrated into the NIR-SWIR atmospheric correction algorithm. According to the accuracy evaluation indexes of RMSD, MAE, and UPD, it can be found that the atmospheric correction results of the aerosol model established in this paper are better than those of the standard aerosol model, especially in the 547 nm band. It demonstrates that the new aerosol model outperforms the standard model in atmospheric correction performance. With the increasing availability of aerosol observational data, the aerosol model is expected to become more accurate and applicable to other satellite missions.

Details

Title
Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula
Author
Kunyang Shan 1 ; Ma, Chaofei 2 ; Lv, Jingning 3 ; Zhao, Dan 3 ; Song, Qingjun 2   VIAFID ORCID Logo 

 National Satellite Ocean Application Service, Beijing 100081, China; [email protected] (K.S.); [email protected] (Q.S.); National Marine Environmental Forecasting Center, Beijing 100081, China 
 National Satellite Ocean Application Service, Beijing 100081, China; [email protected] (K.S.); [email protected] (Q.S.) 
 School of Environment, Southern University of Science and Technology, Shenzhen 518055, China; [email protected] (J.L.); [email protected] (D.Z.) 
First page
1309
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037630868
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.