Full text

Turn on search term navigation

© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Glioblastoma (GBM) is an aggressive brain cancer associated with poor prognosis, intrinsic heterogeneity, plasticity, and therapy resistance. In some GBMs, cell proliferation is fueled by a transcriptional regulator, repressor element-1 silencing transcription factor (REST).

Results

Using CRISPR/Cas9, we identified GBM cell lines dependent on REST activity. We developed new small molecule inhibitory compounds targeting small C-terminal domain phosphatase 1 (SCP1) to reduce REST protein level and transcriptional activity in glioblastoma cells. Top leads of the series like GR-28 exhibit potent cytotoxicity, reduce REST protein level, and suppress its transcriptional activity. Upon the loss of REST protein, GBM cells can potentially compensate by rewiring fatty acid metabolism, enabling continued proliferation. Combining REST inhibition with the blockade of this compensatory adaptation using long-chain acyl-CoA synthetase inhibitor Triacsin C demonstrated substantial synergetic potential without inducing hepatotoxicity.

Conclusions

Our results highlight the efficacy and selectivity of targeting REST alone or in combination as a therapeutic strategy to combat high-REST GBM.

Details

Title
Targeting of REST with rationally-designed small molecule compounds exhibits synergetic therapeutic potential in human glioblastoma cells
Author
Panina, Svetlana B; Schweer, Joshua V; Zhang, Qian; Raina, Gaurav; Hardtke, Haley A; Kim, Seungjin; Yang, Wanjie; Siegel, Dionicio; Zhang, Y Jessie
Pages
1-22
Section
Research article
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
17417007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037853698
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.