It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes.
Methods
Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer.
Results
When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-β, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner.
Conclusions
Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer