It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
For ten years, CRISPR/cas9 system has become a very useful tool for obtaining site-specific mutations on targeted genes in many plant organisms. This technology opens up a wide range of possibilities for improved plant breeding in the future. In plants, the CRISPR/Cas9 system is mostly used through stable transformation with constructs that allow for the expression of the Cas9 gene and sgRNA. Numerous studies have shown that site-specific mutation efficiency can vary greatly between different plant species due to factors such as plant transformation efficiency, Cas9 expression, Cas9 nucleotide sequence, the addition of intronic sequences, and many other parameters. Since 2016, when the first edited grapevine was created, the number of studies using functional genomic approaches in grapevine has remained low due to difficulties with plant transformation and gene editing efficiency. In this study, we optimized the process to obtain site-specific mutations and generate knock-out mutants of grapevine (Vitis vinifera cv. ‘Chardonnay’). Building on existing methods of grapevine transformation, we improved the method for selecting transformed plants at chosen steps of the developing process using fluorescence microscopy.
Results
By comparison of two different Cas9 gene and two different promoters, we increased site-specific mutation efficiency using a maize-codon optimized Cas9 containing 13 introns (zCas9i), achieving up to 100% biallelic mutation in grapevine plantlets cv. ‘Chardonnay’. These results are directly correlated with Cas9 expression level.
Conclusions
Taken together, our results highlight a complete methodology for obtaining a wide range of homozygous knock-out mutants for functional genomic studies and future breeding programs in grapevine.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer