Abstract

This study explores how machine-learning can be used to predict chromatographic retention times (RT) for the analysis of small molecules, with the objective of identifying a machine-learning framework with the robustness required to support a chemical synthesis production platform. We used internally generated data from high-throughput parallel synthesis in context of pharmaceutical drug discovery projects. We tested machine-learning models from the following frameworks: XGBoost, ChemProp, and DeepChem, using a dataset of 7552 small molecules. Our findings show that two specific models, AttentiveFP and ChemProp, performed better than XGBoost and a regular neural network in predicting RT accurately. We also assessed how well these models performed over time and found that molecular graph neural networks consistently gave accurate predictions for new chemical series. In addition, when we applied ChemProp on the publicly available METLIN SMRT dataset, it performed impressively with an average error of 38.70 s. These results highlight the efficacy of molecular graph neural networks, especially ChemProp, in diverse RT prediction scenarios, thereby enhancing the efficiency of chromatographic analysis.

Details

Title
Performance and robustness of small molecule retention time prediction with molecular graph neural networks in industrial drug discovery campaigns
Author
Vik, Daniel 1   VIAFID ORCID Logo  ; Pii, David 1   VIAFID ORCID Logo  ; Mudaliar, Chirag 1   VIAFID ORCID Logo  ; Nørregaard-Madsen, Mads 1   VIAFID ORCID Logo  ; Kontijevskis, Aleksejs 1   VIAFID ORCID Logo 

 Amgen Research Copenhagen, Amgen Inc., Copenhagen, Denmark 
Pages
8733
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3039630091
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.