It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, we investigate the communication networks of urban, suburban, and rural communities from three US Midwest counties through a stochastic model that simulates the diffusion of information over time in disaster and in normal situations. To understand information diffusion in communities, we investigate the interplay of information that individuals get from online social networks, local news, government sources, mainstream media, and print media. We utilize survey data collected from target communities and create graphs of each community to quantify node-to-node and source-to-node interactions, as well as trust patterns. Monte Carlo simulation results show the average time it takes for information to propagate to 90% of the population for each community. We conclude that rural, suburban, and urban communities have different inherent properties promoting the varied flow of information. Also, information sources affect information spread differently, causing degradation of information speed if any source becomes unavailable. Finally, we provide insights on the optimal investments to improve disaster communication based on community features and contexts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Kansas State University, Department of Computer Science, Manhattan, USA (GRID:grid.36567.31) (ISNI:0000 0001 0737 1259)
2 Kansas State University, Department of Electrical and Computer Engineering, Manhattan, USA (GRID:grid.36567.31) (ISNI:0000 0001 0737 1259)
3 Kansas State University, Landscape Architecture and Regional & Community Planning, Manhattan, USA (GRID:grid.36567.31) (ISNI:0000 0001 0737 1259)