Abstract

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers’ amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.

Soft elastic materials could be useful in the fabrication of brain-machine interfaces, but achieving the desirable material properties can be challenging. Here, the authors report control of the amorphous-crystalline transition of polymers to alter hydrogel properties and monitor mouse behaviour.

Details

Title
Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics
Author
Huang, Sizhe 1 ; Liu, Xinyue 2 ; Lin, Shaoting 3   VIAFID ORCID Logo  ; Glynn, Christopher 4 ; Felix, Kayla 4 ; Sahasrabudhe, Atharva 5 ; Maley, Collin 4 ; Xu, Jingyi 4 ; Chen, Weixuan 4   VIAFID ORCID Logo  ; Hong, Eunji 1 ; Crosby, Alfred J. 6   VIAFID ORCID Logo  ; Wang, Qianbin 1   VIAFID ORCID Logo  ; Rao, Siyuan 1   VIAFID ORCID Logo 

 State University of New York, Department of Biomedical Engineering, Binghamton University, Binghamton, USA (GRID:grid.264260.4) (ISNI:0000 0001 2164 4508); University of Massachusetts, Department of Biomedical Engineering, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2166 5835) 
 Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2195 6501) 
 Michigan State University, Department of Mechanical Engineering, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2195 6501) 
 University of Massachusetts, Department of Biomedical Engineering, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2166 5835) 
 Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 University of Massachusetts, Department of Polymer Science and Engineering, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2166 5835) 
Pages
3525
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046096517
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.