Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate prediction of remaining useful life (RUL) plays a significant role in ensuring the safe flight of aircraft. With the recent rapid development of deep learning, there has been a growing trend towards more precise RUL prediction. However, while many current deep learning methods are capable of extracting spatial features—those along the sensor dimension—through convolutional kernels or fully connected layers, their extraction capacity is often limited due to the small scale of kernels and the high uncertainty associated with linear weights. Graph neural networks (GNNs), emerging as effective approaches for processing graph-structured data, explicitly consider the relationships between sensors. This is akin to imposing a constraint on the training process, thereby allowing the learned results to better approximate real-world situations. In order to address the challenge of GNNs in extracting temporal features, we augment our proposed framework for RUL prediction with a Transformer encoder, resulting in the adaptive graph convolutional transformer encoder (AGCTE). A case study using the C-MAPSS dataset is conducted to validate the effectiveness of our proposed model.

Details

Title
Transformer Encoder Enhanced by an Adaptive Graph Convolutional Neural Network for Prediction of Aero-Engines’ Remaining Useful Life
Author
Ma, Meng 1 ; Wang, Zhizhen 1 ; Zhong, Zhirong 2 

 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; [email protected]; National Key Lab of Aerospace Power System and Plasma Technology, Xi’an Jiaotong University, Xi’an 710049, China 
 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] 
First page
289
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046482074
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.