Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We propose a heuristic method to solve polynomial matrix equations of the type k=1makXk=B, where ak are scalar coefficients and X and B are square matrices of order n. The method is based on the decomposition of the B matrix as a linear combination of the identity matrix and an idempotent, involutive, or nilpotent matrix. We prove that this decomposition is always possible when n=2. Moreover, in some cases we can compute solutions when we have an infinite number of them (singular solutions). This method has been coded in MATLAB and has been compared to other methods found in the existing literature, such as the diagonalization and the interpolation methods. It turns out that the proposed method is considerably faster than the latter methods. Furthermore, the proposed method can calculate solutions when diagonalization and interpolation methods fail or calculate singular solutions when these methods are not capable of doing so.

Details

Title
A Heuristic Method for Solving Polynomial Matrix Equations
Author
González-Santander, Juan Luis  VIAFID ORCID Logo  ; Fernando Sánchez Lasheras  VIAFID ORCID Logo 
First page
239
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20751680
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046587929
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.