Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sandy areas occupy a huge amount of land worldwide, but due to their characteristics, they are mostly low in fertility and low in organic matter. Sandy soils have coarse texture, high saturated hydraulic conductivity, low soil organic carbon, and poor aggregate stability and water retention capacity; therefore, it is necessary to add organic additives to them. The objective of this study was to assess the effect of particle size and application rate of biochar (BC) produced under different pyrolysis temperatures on the porosity P, available water content for plants AWC, saturated hydraulic conductivity Ks, and contact angle CA of sandy soil. The results show that an application of BC to sandy soil significantly increased AWC by 76–168%, CA by 252–489%, P by 6–11%, and significantly reduced Ks by 37–90%. Statistical analysis of the effect of three examined factors (BC application rate, particle size, and pyrolysis temperature) revealed that P, AWC, and Ks were affected by all three factors, while CA was affected only by BC application rate and particle size. The statistically significant interaction between the two factors was found for P (temperature × rate and size × rate), AWC (temperature × size), and Ks (size × rate). Statistically significant interaction among the three factors was not found for any hydrophysical parameter. The application of BC to amend sandy soils can be seen as a strategy to mitigate drought conditions and to reduce the amount of irrigation, saving water. Further investigations are needed with regard to the BC application under climate conditions with long hot and dry periods, which may promote soil water repellency.

Details

Title
Influence of Biochar Application Rate, Particle Size, and Pyrolysis Temperature on Hydrophysical Parameters of Sandy Soil
Author
Vitková, Justína 1   VIAFID ORCID Logo  ; Šurda, Peter 1   VIAFID ORCID Logo  ; Lichner, Ľubomír 1   VIAFID ORCID Logo  ; Výleta, Roman 2   VIAFID ORCID Logo 

 Institute of Hydrology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; [email protected] (J.V.); [email protected] (P.Š.) 
 Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology, 810 05 Bratislava, Slovakia; [email protected] 
First page
3472
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046774321
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.