Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Corrugated web girders with plate flanges have been widely applied in buildings and bridges due to the large shear capacity of the corrugated web (CW). However, experiments on corrugated web girders with tubular flanges are limited. Accordingly, this paper explores, through four full-scale small-size experimental tests used on buildings, the shear behavior of a type of girder formed with a CW, concrete-filled tubular flange, and bottom flat plate flange (CWGCFTF) with different CW thicknesses, wavelengths, and concrete strengths. Based on the imprecise results of one current test, a novel simple support device is proposed to improve the accuracy of the shear test of the CWGCFTF. The test results also show that the shear ratios of the tubular flange to the entire cross-section range from 15–18% when the loading reaches that of the corresponding shear stress to 80% of the shear yield strength of the CWs. Moreover, local buckling appears at the top surface of the steel tube with the CW shear buckling failure of the CWGCFTF under the shear tests. At the end, a theoretical equation of the shear ratio of the CW to the whole cross-section is derived, and a shear yield strength equation of the CWGCFTF is proposed and verified by comparisons with the test results.

Details

Title
Shear Test of Corrugated Web Girders with Concrete-Filled Compression Tubular Flanges Used in Buildings
Author
Deng, Hao; Hong-Bin, Peng; Chang, Wei
First page
973
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046780662
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.