Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper is concerned with solving the problem of identifying the control vector problem for a fractional multi-order system of nonlinear ordinary differential equations (ODEs). We describe a quasilinearization approach, based on minimization of a quadratic functional, to compute the values of the unknown parameter vector. Numerical algorithm combining the method with appropriate fractional derivative approximation on graded mesh is applied to SIS and SEIR problems to illustrate the efficiency and accuracy. Tikhonov regularization is implemented to improve the convergence. Results from computations, both with noisy-free and noisy data, are provided and discussed. Simulations with real data are also performed.

Details

Title
A Quasilinearization Approach for Identification Control Vectors in Fractional-Order Nonlinear Systems
Author
Koleva, Miglena N 1   VIAFID ORCID Logo  ; Vulkov, Lubin G 2 

 Department of Mathematics, Faculty of Natural Sciences and Education, University of Ruse, 8 Studentska Str., 7017 Ruse, Bulgaria 
 Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse, 8 Studentska Str., 7017 Ruse, Bulgaria; [email protected] 
First page
196
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046822574
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.