It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Partial discharges and corona are considered as unwanted processes in electrical power systems since they are constant source of power loss and electrical noise (EMI). These effects can further develop into a major problem at the component level, causing solid insulation deterioration and component failure leading to possible bulk electrical breakdown.
The problems are well documented for traditional ground-based (i.e. utility) electrical power systems, and there exists a considerable knowledge base on the subject. However, this knowledge base does not readily extend to on-board electrical power systems in aerospace vehicles because such systems are required to operate at very low atmospheric pressure (i.e. in partial vacuum) and frequencies in the tens of kHz range.
Also, much of what is known for aerospace systems is limited to standard 28 V dc systems, whereas the next generation of aerospace systems is expected to operate at higher voltages. Thus, there is an incentive to conduct basic research into corona, partial discharge and gaseous breakdown in gases at partial vacuum conditions, voltages, and frequencies, and for geometries corresponding to the environment encountered in current and future aerospace power systems.
This work presents studies on the breakdown characteristics of helium, nitrogen and zero air under unipolar sinusoidal and pulsed voltages at frequencies varying from 20 kHz to 220 kHz in partial vacuum, for a point-to-point and point-to-plane electrode configurations. These voltages are compared to the dc data obtained under similar conditions. Also, breakdown voltage versus pressure curves similar to Pashcen plots are presented. Breakdown voltages of these gases as a function of signal frequency are also presented.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer