Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polymers are essential in several sectors, yet some applications necessitate surface modification. One practical and eco-friendly option is non-thermal plasma exposure. The present research endeavors to examine the impacts of dielectric barrier discharge atmospheric pressure plasma on the chemical composition and wettability properties of acrylonitrile butadiene styrene surfaces subject to the action of additive manufacturing. The plasma source was produced by igniting either helium or argon and then adjusted to maximize the operational conditions for exposing polymers. The drop in contact angle and the improvement in wettability after plasma exposure can be due to the increased oxygen-containing groups onto the surface, together with a reduction in carbon content. The research findings indicated that plasma treatment significantly improved the wettability of the polymer surface, with an increase of up to 60% for both working gases, while the polar index increased from 0.01 up to 0.99 after plasma treatment. XPS measurements showed an increase of up to 10% in oxygen groups at the surface of He–plasma-treated samples and up to 13% after Ar–plasma treatment. Significant modifications were observed in the structure that led to a reduction of its roughness by 50% and also caused a leveling effect after plasma treatment. A slight decrease in the glass and melting temperature after plasma treatment was pointed out by differential scanning calorimetry and broadband dielectric spectroscopy. Up to a 15% crystallinity index was determined after plasma treatment, and the 3D printing process was measured through X-ray diffraction. The empirical findings encourage the implementation of atmospheric pressure plasma-based techniques for the environmentally sustainable manipulation of polymers for applications necessitating higher levels of adhesion and specific prerequisites.

Details

Title
Effects of Atmospheric Pressure Plasma Jet on 3D-Printed Acrylonitrile Butadiene Styrene (ABS)
Author
Andrei Vasile Nastuta 1   VIAFID ORCID Logo  ; Asandulesa, Mihai 2   VIAFID ORCID Logo  ; Spiridon, Iuliana 2 ; Cristian-Dragos Varganici 2   VIAFID ORCID Logo  ; Huzum, Ramona 3   VIAFID ORCID Logo  ; Mihaila, Ilarion 3   VIAFID ORCID Logo 

 Physics and Biophysics Education Research Laboratory (P&B-EduResLab), Biomedical Science Department, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, M. Kogalniceanu Str., No. 9–13, 700454 Iasi, Romania 
 “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania 
 Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Blvd. Carol I No. 11, 700506 Iasi, Romania 
First page
1848
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3047005004
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.