Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper delves into the strategic design and optimization of silver (Ag) nanostructured arrays within plasmonic metamaterials, targeting the enhancement of imaging sensitivity. Leveraging Finite-Difference Time-Domain (FDTD) simulations, our research rigorously compares various Ag nanostructured geometries, including nanospheres, nanocones, nanodisks, and nanocubes. The aim is to pinpoint configurations that significantly enhance electric field localization on the surfaces of nanostructures, a pivotal factor. The nanocube array exhibits superior field enhancement, particularly in narrow nanogaps, suggesting its suitability for high-sensitivity applications. Further exploration into nanocube arrays reveals the crucial role of nanogap size and spacer layer thickness in tuning the optical properties through the manipulation of Fabry–Pérot and mirror image modes in metal–insulator–metal (MIM) structures. By presenting a thorough analysis of these nanostructured arrays, the study not only contributes to our understanding of the fundamental principles governing plasmonic metamaterials but also provides a solid foundation for future innovation in highly sensitive imaging applications. It underscores the importance of nanostructure design and optimization in achieving significant improvements in the performance of plasmonic devices, marking a pivotal step forward in the field of nanophotonics and its application to sensitive imaging technologies.

Details

Title
Design and Optimization of Silver Nanostructured Arrays in Plasmonic Metamaterials for Sensitive Imaging Applications
Author
Okamoto, Koichi 1   VIAFID ORCID Logo  ; Tanaka, Daisuke 2   VIAFID ORCID Logo  ; Matsuyama, Tetsuya 1 ; Wada, Kenji 1 ; Arima, Yusuke 3   VIAFID ORCID Logo  ; Tamada, Kaoru 3 

 Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan 
 Department of Electrical and Electronic Engineering, National Institute of Technology (KOSEN), Oita College, Oita 870-0152, Japan 
 Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan; [email protected] 
First page
292
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3047030261
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.