Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61. The dithiol polymers reacted with carbosilane crosslinkers through UV-initiated thiol–ene coupling (TEC), and the resultant materials were classified as non-swelling networks (for PPG, PLUL31 and PLUL61) and high-swelling hydrogels (for PEG and PLUL35). The hydrogels exhibited thermo-responsive properties, shrinking at higher temperatures, and exhibited an intriguing drug release pattern due to internal nanostructuring. Furthermore, we fine-tuned the dendritic crosslinker, including hydroxyl and azide pendant groups in the focal point, generating functional networks that can be modified through degradable (ester) and non-degradable (triazol) bonds. Overall, this work highlighted the crucial role of the amphiphilic balance in the design of dendritic hydrogels with thermo-responsive behavior and confirmed their potential as functional networks for biomedical applications.

Details

Title
Fine-Tuning the Amphiphilic Properties of Carbosilane Dendritic Networks towards High-Swelling Thermogels
Author
Muñoz-Sánchez, Silvia 1 ; Barrios-Gumiel, Andrea 1 ; Francisco Javier de la Mata 2   VIAFID ORCID Logo  ; García-Gallego, Sandra 2   VIAFID ORCID Logo 

 University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; [email protected] (S.M.-S.); [email protected] (A.B.-G.); [email protected] (F.J.d.l.M.) 
 University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; [email protected] (S.M.-S.); [email protected] (A.B.-G.); [email protected] (F.J.d.l.M.); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain 
First page
495
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3047033779
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.