Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The expected acceleration in sea level rise (SLR) throughout this century poses significant threats to coastal cities and low-lying regions. Since the early 1990s, high-precision multi-mission satellite altimetry (SA) has enabled the routine measurement of sea levels, providing a continuous 30-year record from which the mean sea level rise (global and regional) and its variability can be computed. The latest reprocessed product from CMEMS span the period from 1993 to 2020, and have enabled the acquisition of accurate sea level data within the coastal range of 0–20 km. In order to fully utilize this new dataset, we establish a global virtual network consisting of 184 virtual SA stations. We evaluate the impact of different stochastic noises on the estimation of the velocity of the sea surface height (SSH) time series using BIC_tp information criterion. In the second step, the principal component analysis (PCA) allows the common mode noise in the SSH time series to be mitigated. Finally, we analyzed the spatiotemporal characteristics and accuracy of sea level change derived from SA. Our results suggest that the stochasticity of the SSH time series is not well described by a combination of random, flicker, and white noise, but is best described by an ARFIM/ARMA/GGM process. After removing the common mode noise with PCA, about 96.7% of the times series’ RMS decreased, and most of the uncertainty associated with the computed SLR decreased. We confirm that the spatiotemporal correlations should be accounted for to yield trustworthy trends and reliable uncertainties. Our estimated SLR is 2.75 ± 0.89 mm/yr, which aligns closely with recent studies, emphasizing the robustness and consistency of our method using virtual SA stations. We additionally introduce open-source software (SA_Tool V1.0) to process the SA data and reduce noise in surface height time series to the community.

Details

Title
Enhancing Sea Level Rise Estimation and Uncertainty Assessment from Satellite Altimetry through Spatiotemporal Noise Modeling
Author
Huang, Jiahui 1   VIAFID ORCID Logo  ; He, Xiaoxing 1   VIAFID ORCID Logo  ; Jean-Philippe Montillet 2 ; Machiel Simon Bos 3 ; Hu, Shunqiang 4 

 School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; [email protected] 
 Institute Dom Luiz, University of Beira Interior, 6201-001 Covilhã, Portugal; [email protected] 
 TeroMovigo Company, 3030-199 Coimbra, Portugal; [email protected] 
 Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; [email protected] 
First page
1334
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3047080089
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.