It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Mycobacterium tuberculosis complex (MTBC) comprises nine human-adapted lineages that differ in their geographical distribution. Local adaptation of specific MTBC genotypes to the respective human host population has been invoked in this context. We aimed to assess if bacterial genetics governs MTBC pathogenesis or if local co-adaptation translates into differential susceptibility of human macrophages to infection by different MTBC genotypes. We generated macrophages from cryopreserved blood mononuclear cells of Tanzanian tuberculosis patients, from which the infecting MTBC strains had previously been phylogenetically characterized. We infected these macrophages ex vivo with a phylogenetically similar MTBC strain (“matched infection”) or with strains representative of other MTBC lineages (“mismatched infection”). We found that L1 infections resulted in a significantly lower bacterial burden and that the intra-cellular replication rate of L2 strains was significantly higher compared the other MTBC lineages, irrespective of the MTBC lineage originally infecting the patients. Moreover, L4-infected macrophages released significantly greater amounts of TNF-α, IL-6, IL-10, MIP-1β, and IL-1β compared to macrophages infected by all other strains. While our results revealed no measurable effect of local adaptation, they further highlight the strong impact of MTBC phylogenetic diversity on the variable outcome of the host–pathogen interaction in human tuberculosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Swiss Tropical and Public Health Institute, Basel, Switzerland (GRID:grid.416786.a) (ISNI:0000 0004 0587 0574); University of Basel, Basel, Switzerland (GRID:grid.6612.3) (ISNI:0000 0004 1937 0642); Ifakara Health Institute, Bagamoyo, Tanzania (GRID:grid.414543.3) (ISNI:0000 0000 9144 642X)
2 Swiss Tropical and Public Health Institute, Basel, Switzerland (GRID:grid.416786.a) (ISNI:0000 0004 0587 0574); University of Basel, Basel, Switzerland (GRID:grid.6612.3) (ISNI:0000 0004 1937 0642)
3 Ecole Polytechnique Federale de Lausanne, School of Life Sciences, Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049); Swiss Institute of Bioinformatics, Lausanne, Switzerland (GRID:grid.419765.8) (ISNI:0000 0001 2223 3006); Lausanne University Hospital and University of Lausanne, Precision Medicine Unit, Lausanne, Switzerland (GRID:grid.9851.5) (ISNI:0000 0001 2165 4204)