Abstract

Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.

Details

Title
Trauma-associated extracellular histones mediate inflammation via a MYD88-IRAK1-ERK signaling axis and induce lytic cell death in human adipocytes
Author
Roos, Julian 1 ; Zinngrebe, Julia 1 ; Huber-Lang, Markus 2   VIAFID ORCID Logo  ; Lupu, Ludmila 2 ; Schmidt, Miriam A. 1 ; Strobel, Hannah 1 ; Westhoff, Mike-Andrew 1 ; Stifel, Ulrich 1 ; Gebhard, Florian 3 ; Wabitsch, Martin 4   VIAFID ORCID Logo  ; Mollnes, Tom Eirik 5 ; Debatin, Klaus-Michael 1 ; Halbgebauer, Rebecca 2 ; Fischer-Posovszky, Pamela 1   VIAFID ORCID Logo 

 University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany (GRID:grid.411984.1) (ISNI:0000 0001 0482 5331) 
 University Medical Center, Institute of Clinical and Experimental Trauma Immunology, Ulm, Germany (GRID:grid.411984.1) (ISNI:0000 0001 0482 5331) 
 University Medical Center, Department of Orthopedic Trauma, Hand, and Reconstructive Surgery, Ulm, Germany (GRID:grid.411984.1) (ISNI:0000 0001 0482 5331) 
 University Medical Center, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm, Germany (GRID:grid.411984.1) (ISNI:0000 0001 0482 5331) 
 Oslo University Hospital and University of Oslo, Department of Immunology, Oslo, Norway (GRID:grid.55325.34) (ISNI:0000 0004 0389 8485); Nordland Hospital Trust, Research Laboratory, Bodo, Norway (GRID:grid.420099.6) 
Pages
285
Publication year
2024
Publication date
Apr 2024
Publisher
Springer Nature B.V.
e-ISSN
20414889
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3048602946
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.