Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Gait is the manner or style of walking, involving motor control and coordination to adapt to the surrounding environment. Knowing the kinesthetic markers of normal gait is essential for the diagnosis of certain pathologies or the generation of intelligent ortho-prostheses for the treatment or prevention of gait disorders. The aim of the present study was to identify the key features of normal human gait using inertial unit (IMU) recordings in a walking test. Methods: Gait analysis was conducted on 32 healthy participants (age range 19–29 years) at speeds of 2 km/h and 4 km/h using a treadmill. Dynamic data were obtained using a microcontroller (Arduino Nano 33 BLE Sense Rev2) with IMU sensors (BMI270). The collected data were processed and analyzed using a custom script (MATLAB 2022b), including the labeling of the four relevant gait phases and events (Stance, Toe-Off, Swing, and Heel Strike), computation of statistical features (64 features), and application of machine learning techniques for classification (8 classifiers). Results: Spider plot analysis revealed significant differences in the four events created by the most relevant statistical features. Among the different classifiers tested, the Support Vector Machine (SVM) model using a Cubic kernel achieved an accuracy rate of 92.4% when differentiating between gait events using the computed statistical features. Conclusions: This study identifies the optimal features of acceleration and gyroscope data during normal gait. The findings suggest potential applications for injury prevention and performance optimization in individuals engaged in activities involving normal gait. The creation of spider plots is proposed to obtain a personalised fingerprint of each patient’s gait fingerprint that could be used as a diagnostic tool. A deviation from a normal gait pattern can be used to identify human gait disorders. Moving forward, this information has potential for use in clinical applications in the diagnosis of gait-related disorders and developing novel orthoses and prosthetics to prevent falls and ankle sprains.

Details

Title
Kinematic Analysis of Human Gait in Healthy Young Adults Using IMU Sensors: Exploring Relevant Machine Learning Features for Clinical Applications
Author
Marimon, Xavier 1   VIAFID ORCID Logo  ; Mengual, Itziar 2   VIAFID ORCID Logo  ; López-de-Celis, Carlos 3   VIAFID ORCID Logo  ; Portela, Alejandro 2   VIAFID ORCID Logo  ; Rodríguez-Sanz, Jacobo 4   VIAFID ORCID Logo  ; Iria Andrea Herráez 2   VIAFID ORCID Logo  ; Pérez-Bellmunt, Albert 4   VIAFID ORCID Logo 

 Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain; [email protected] (X.M.); [email protected] (A.P.); [email protected] (I.A.H.); Automatic Control Department, Universitat Politècnica de Catalunya (UPC-BarcelonaTECH), 08034 Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain 
 Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain; [email protected] (X.M.); [email protected] (A.P.); [email protected] (I.A.H.) 
 ACTIUM Research Group, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain; [email protected] (C.L.-d.-C.); [email protected] (A.P.-B.); Institut Universitari d’Investigació en Atenció Primària (IDIAP Jordi Gol), 08007 Barcelona, Spain 
 ACTIUM Research Group, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain; [email protected] (C.L.-d.-C.); [email protected] (A.P.-B.) 
First page
105
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3048722985
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.