It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Any kidney dimension and volume variation can be a remarkable indicator of kidney disorders. Precise kidney segmentation in standard planes plays an undeniable role in predicting kidney size and volume. On the other hand, ultrasound is the modality of choice in diagnostic procedures. This paper proposes a convolutional neural network with nested layers, namely Fast-Unet++, promoting the Fast and accurate Unet model. First, the model was trained and evaluated for segmenting sagittal and axial images of the kidney. Then, the predicted masks were used to estimate the kidney image biomarkers, including its volume and dimensions (length, width, thickness, and parenchymal thickness). Finally, the proposed model was tested on a publicly available dataset with various shapes and compared with the related networks. Moreover, the network was evaluated using a set of patients who had undergone ultrasound and computed tomography. The dice metric, Jaccard coefficient, and mean absolute distance were used to evaluate the segmentation step. 0.97, 0.94, and 3.23 mm for the sagittal frame, and 0.95, 0.9, and 3.87 mm for the axial frame were achieved. The kidney dimensions and volume were evaluated using accuracy, the area under the curve, sensitivity, specificity, precision, and F1.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Med Fanavaran Plus Co., Research and Development Department, Karaj, Iran (GRID:grid.520305.1)
2 Iran University of Medical Sciences, Department of Radiology, Hasheminejad Kidney Center, Tehran, Iran (GRID:grid.411746.1) (ISNI:0000 0004 4911 7066)
3 Climax Radiology Education Foundation, Section of Body Imaging, Division of Clinical Research, Tehran, Iran (GRID:grid.520305.1)
4 Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4, Switzerland (GRID:grid.150338.c) (ISNI:0000 0001 0721 9812)