Abstract

The copper (Cu)-catalyzed electrochemical CO2 reduction provides a route for the synthesis of multicarbon (C2+) products. However, the thermodynamically favorable Cu surface (i.e. Cu(111)) energetically favors single-carbon production, leading to low energy efficiency and low production rates for C2+ products. Here we introduce in situ copper faceting from electrochemical reduction to enable preferential exposure of Cu(100) facets. During the precatalyst evolution, a phosphate ligand slows the reduction of Cu and assists the generation and co-adsorption of CO and hydroxide ions, steering the surface reconstruction to Cu (100). The resulting Cu catalyst enables current densities of > 500 mA cm−2 and Faradaic efficiencies of >83% towards C2+ products from both CO2 reduction and CO reduction. When run at 500 mA cm−2 for 150 hours, the catalyst maintains a 37% full-cell energy efficiency and a 95% single-pass carbon efficiency throughout.

Copper electrocatalysts enable carbon dioxide/carbon monoxide reduction but suffer from low production rates. Here, the authors promote in situ growth of Cu(100) during electrolysis, enabling efficient and stable electrosynthesis of multicarbon products at industrially-relevant current densities

Details

Title
In situ copper faceting enables efficient CO2/CO electrolysis
Author
Yao, Kaili 1 ; Li, Jun 2   VIAFID ORCID Logo  ; Ozden, Adnan 3 ; Wang, Haibin 4   VIAFID ORCID Logo  ; Sun, Ning 2 ; Liu, Pengyu 2 ; Zhong, Wen 2 ; Zhou, Wei 5 ; Zhou, Jieshu 4 ; Wang, Xi 4 ; Liu, Hanqi 2 ; Liu, Yongchang 6   VIAFID ORCID Logo  ; Chen, Songhua 7 ; Hu, Yongfeng 8   VIAFID ORCID Logo  ; Wang, Ziyun 9   VIAFID ORCID Logo  ; Sinton, David 3   VIAFID ORCID Logo  ; Liang, Hongyan 4   VIAFID ORCID Logo 

 Tianjin University, School of Materials Science and Engineering, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484); Kunming University of Science and Technology, Faculty of Chemical Engineering, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X) 
 Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
 University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 Tianjin University, School of Materials Science and Engineering, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484) 
 Tianjin University, School of Science, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484) 
 Tianjin University, School of Materials Science and Engineering, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484); Tianjin University, State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484) 
 Longyan University, College of Chemistry and Material Science, Longyan, China (GRID:grid.440829.3) (ISNI:0000 0004 6010 6026) 
 Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, China (GRID:grid.418531.a) (ISNI:0000 0004 1793 5814) 
 The University of Auckland, School of Chemical Sciences, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343) 
Pages
1749
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3048753230
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.